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The influence of the sub-light-speed group velocity of a square-shaped laser pulse on a longitudinal
wake-field wave is examined via a one-dimensional analysis of the electric potential equation. Analytical
expressions for the potential, the electric field, the wake-field wavelength, and the optimum pulse width
are obtained and fully agree with results from the numerical integration of the potential equation. The
conditions for the onset of wave breaking due to sub-light-velocity pulses are given for both leading and
trailing pulse edges, in agreement with particle simulations.

PACS number(s): 52.35.Mw, 52.40.Db, 52.35.Fp, 52.40.Nk

Recently, compact terawatt lasers within the wave-
length range 0.25-1.05 um have been able to deliver, after
focusing, irradiances up to 10'® W/cm? [1]. This gives
the focal-volume electrons a relativistic quiver momen-
tum, which, normalized to m,c, is written as
a,=0.85(I,A3/10"®)!/2 where m, denotes the electron
mass, c¢ is the light velocity in vacuum, A is the laser
wavelength in micrometers, and I is the laser irradiance
in units of W/cm? The electron motion is largely
influenced by the ponderomotive force associated with
the longitudinal gradient of the laser pulse energy (along
the pulse propagation). This force gives rise, behind the
laser pulse, to a coherent motion of the electron fluid in
the form of an electron plasma wave (EPW); this is the
so-called wake-field effect. A large electric field with a
phase velocity equal to the laser group velocity can be in-
duced; this may turn out to be of great interest as a new
electron-accelerator concept.

During the past years this effect has been intensively
studied via a single-electron-fluid model within the as-
sumption v, =c [2,3]. In this paper, we remove this as-
sumption and we address the influence of the laser group
velocity on the various wake-field EPW features and,
especially, we consider the limit to the EPW generation.
Beyond a critical irradiance, the longitudinal velocities of
some electrons are so large that they are predicted to
exceed the finite propagation velocity (group velocity) of
the laser light. Electron overtaking then results and in-
duces EPW breaking with fast-electron generation, thus
nullifying further application of the single-fluid model.

The plasma is assumed to be cold, homogeneous with
density n,, electrically neutral, and having immobile ions.
The laser wave is a planar wave, the group velocity of
which is assumed to be constant over the pulse. Al-
though the group-velocity modification from its classical
value due to relativistic effects is still not well understood,
the latter assumption is valid if the pulse is about one
electron-plasma-period wide and propagates over a few
pulse lengths. Along the longitudinal direction denoted
by x, the laser-plasma interaction is described by the elec-
tron density n,, velocity v,, and the electric potential ¢,
which are coupled by the density and momentum conser-
vation equations and the Poisson equation. In a frame
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drifting with velocity v, with respect to the laboratory
frame, and by using the so-called quasistatic approxima-
tion (QSA) [2], which assumes no feedback of the EPW
onto the laser wave, the basic equations [2] simplify to
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with §=(cope/c)(x—vgt), where ¢t denotes time,

B, =v,/c, B,=v,/c, and ¢=edp/m,c? and o, is the
electron plasma frequency. ¥ is the electron Lorentz fac-
tor y,(1—B%)"12 with y2=1+a3/2f(£); f denotes the
energy profile of their incident laser pulse and a=1 or 2
for linear or circular laser polarization, respectively; —e
is the electron charge; the unperturbed-plasma frequency
satisfies w,, /@y <1, since we consider underdense plasma
(wq is the radial laser frequency). Defining =1-+¢ and
combining Eqgs. (1a)—(1c) yield the nonlinear equation
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Under the assumption 8, =1, Eq. (2) reduces to the ex-
pression 8%y /3¢%=L(y?/¢*—1), which is identical to the
Eq. (6b) result of Esarey and co-workers [2]. In the gen-
eral classical regime Bgil, ay<<1, Eq. (2) reduces to a
forced harmonic oscillator equation B29°¢/35*+4
=aalf (£)/4, which is the basic equation of Gorbunov
and Kirzanov’s paper [4].

To prevent complex values in Eq. (2), the potential
needs to exceed a minimum potential @,,; =v,,; — 1 given
by

ll}deYL‘/l_ g ) (3)
where the index md denotes minimum and destruction.
From Eq. (1b) and the y definition, we can observe that
Y—1,,, also implies B, —P,; the onset of complexity
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thus signals the failure of the fluid approximation due to
electron overtaking and thus denotes wave breaking.
Equation (3) may be verified either inside the pulse if
Y2 yo(1—B2)!? or at the trailing edge if Y= (1—-p2)172,
where 7, denotes ¥, > 1. This irradiance-dependent limit
is due to the increase in the electron inertial mass, caus-
ing a lower-electron velocity inside the pulse. For =0,
¥ is minimum and equals 1; for a square pulse this gives
the wave-breaking condition 7051/(1~B§)’/ 2 (see the
top curve in Fig. 1).

Henceforth, we assume a square-shaped pulse:
fE)=1, y,=yqfor —§,<£=<0 and f(£)=0, y,=1 for
§= —&o. In contrast to other pulse shapes, this approxi-
mation lets us separate the variables ¥ and ¢ in Eq. (2)
and integrate once to obtain

iﬂzz_ rI1+B,)
dg P+ —yi(1—p2))2

il s S 3)
1+B,

with the constants C,, determined by the domain of
interest, i.e., the pulse (C,) and the pulse wake (C,). If
we rewrite Eq. (4) as (d¢/d§)2=F(¢r,71,Bg)+C1,2,
the requirement for continuity of ¢ and dy/d¢ at
the front edge (§=0) gives C;= —F( 1,70,8,) and, at the
rear edge (£=—Cp), gives C,=F((—&o),v0,8,)
_F(¢( _go), I;Bg )"F( l,Yo,Bg )

We now consider the solutions to Eq. (4) inside the
pulse. An integral expression for £ is obtained, which, by
defining U =¢+[¢*—y3(1 —B;)]l/z, becomes
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FIG. 1. Critical laser electric field V'aa, for wave breaking
onset vs the laser group velocity. The curves labeled a and b
correspond to the pulse and the wake-field regions, respectively.
The incident electric fields ay, which induce wave breaking in
both particle simulations and direct numerical solution of the
potential equation are framed by bars; the latter are terminated
by squares for a square pulse, the full width of which is =,
and by triangles for a sine-squared pulse with {,=2#. The clas-
sical expression for the group velocity v, /c =(1—w?, /w3)'/? is
used for w,, /wy=0.5, 0.41, 0.25, and 0.1. The conditions asso-
ciated with the bottom squares and triangles do not exhibit
wave breaking, in contrast to the top ones.
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E denotes the elliptic integral of the second kind [5],
where its argument Y, its modulus m, and the quanti-
ties U, are defined as

. (uaw-ul) 172 _1, v |2
xese g oo | 0™ U,
(©)
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+

T =B
U_=1+[1—y31-B;)]">.

Real solutions require that U_<U=U,. For U=U_,,
which corresponds to the maximum potential,
X1=7/2+n (nis an integer) and the elliptic integral E
is complete. This value of x, lets us define the optimum
pulse length as (2n +1)§,, with
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Figure 2 shows the evolution of {,, as a function of ,.
For low values of a,, the classical result is recovered [4],
i.e., the pulse width is at least one-half of the wake-field
EPW wavelength, {,,=mv,/c. For {=—(,, we have
U=U,, giving the maximum electric potential,
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FIG. 2. Optimal pulse length (dotted lines) maximizing the
electric potential and wavelength (full lines) of the wake plasma
wave vs the laser group velocity. The curves are labeled with
the values of Vaa,.
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The smallest potential value given by U =U _ is simply
¢=0. The normalized electric field E=e /m,w,.c can be
expressed as E=—dy/d{ and therefore is maximum
when Eq. (2) =0; this yields )=y, and, using Eq. (4), this
gives the maximum (M) and minimum (m) electric fields,

Ey=—E,=V2|—y,+
M m Yo 1+8,

v3B,
1+ [1—31—5)]"

172

(10

The previous results [2] are recovered when B, =1. In-
side the pulse, we have C,=y3+1, U, =2y3 U_=2,
and U=21y. Then the optimum pulse length becomes
Sop=2¥oE (7/2,m}), with m;=(1—1/y3)'/?, and the
maximum potential and electric field given by ¢,, =y3—1
and E,, =vy,— 1, respectively.

Now we deal with the wake field itself, behind the
pulse, in the case of the optimum pulse length. As seen
above, the potential is then maximum at the end of the
pulse, leading to C2=—F(¢(—§0),1,Bg). If we denote
X =y+[¢*—(1—p2)]'% we obtain as the solution of
Eq. (4):

=—2n + 16—V 145, l\/}: 1——;:7%_]
XE(X27m2)
1~3§_ (X, —X)(X—X_) ]“Z} an
X_VX, Xy ’

where the argument Y,, the modulus m, of the elliptic in-
tegral, and the variables X, are

[ xe—x 172 [, x_ |2
X,=sin X, —X_ , m, X, )
(12)
1+8 S
X, = Zg(Czi\/C§—4).

The variable X must lie in the range [X _,X ]. The loca-
tions where Y,=nm are associated with X =X_, i.e.,
the maximum potential, and the locations where
X2=m/2+nm are associated with X=X_, i.., the
minimum potential. Unfortunately, the resulting expres-
sions cannot be reduced to compact expressions like
those for 1 inside the pulse. Behind the pulse, a spatially
periodic pattern appears with the following wavelength:

1—-B2
X, X_

A =2V1+B, VX, |1 E|Zmy |, (13)

whose dependence on B, and q, is displayed in Fig. 2; the
wake-field wavelength is roughly twice the optimum
length. Inside the wake field, the maximum potential is
given by Eq. (9) and the minimum potential by

(1+B,)? 1-B,
X, T 1+B,

5 =1

o2

-1, (14)

where we can use X =1, +V ¢, —(1—B2). From Eq.
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(2) with ¥, =1, we can observe that the electric field is
maximized or minimized for ¢¥=1, i.e.,, X =1 +B;. Sub-
stituting ¥=1 in Eq. (4) yields for the minimum and max-
imum fields

e m . B
Ey=—E,=V ;
" Y+ —(1=B)]'2
172
+ lﬁ"; ~1] . (15)
4

For B, =1, we recover the previous results [2]. Indeed,
we have C,=1/y3+73, so that the potential oscillates
between ¢,,=—1+1/y3 and ¢,,=y3—1 and the wake-
field wavelength becomes A,=4yE(7/2,m,), with
m,=(1—1/73)""% the maximum electric field reduces to
E,,=yo—1/y,. As shown by Fig. 3, ¢,, and E,, in-
crease with decreasing B,; the larger the irradiance, the
stronger the increase. The dotted lines indicate the wave
breaking limit described in the next paragraph; they let
us observe that the permitted group velocity range nar-
rows dramatically with increasing irradiance.

At this point, we can express more clearly the wave-
breaking condition, Eq. (3). Indeed, the latter leads to
12 =(1——B§)1/2, which, in Eq. (14), yields a relation be-
tween X, and 3,. We subsequently find the maximum
laser irradiance beyond which the wake-field EPW
breaks:

, _ 1B [[a+B,) ”2+ (1-B, > |
YoaT g 1-B, 1+8,
2
_W—ﬁgl . (16)
4

When 3, approaches 1, ¥, scales as V/'2/(1—S,). The
dependence of yo, Vs B, is given by the bottom curve in
Fig. 1, which lies clearly below the wave-breaking condi-
tion inside the pulse. At wave breaking, Eq. (15) gives
the maximum electric field:

1
(1—B3)'"

172

Eyy=V2 1 , (17

which expression is exactly Akhiezer and Polovin’s pre-
diction [6], since the EPW phase velocity is equal to the
laser-group velocity.

The analytic expressions derived above, which have
been set forth, have been spot checked by numerical solu-
tions of the potential equation, Eq. (2), via a fourth-order
Runge-Kutta scheme. As an example, Fig. 4 displays the
electric field along z for two different 3, and the associat-
ed optimum pulse lengths: as 3, decreases approaching
the wave-breaking limit, the wave clearly steepens. A
typical feature of the optimum pulse is that the longitudi-
nal electric field is zero and the potential is maximum at
the end of the pulse; as a consequence, ¥ is a monotonic
function of z inside an optimum pulse. We stress that the
numerical check of wave-breaking onset requires very
small mesh size and that too large a mesh size provides a
smaller threshold for a,; so, the mesh size A{=27 /400
for B, =0.995 gives a complex solution at the theoretical
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FIG. 3. Minimum potential (below 0) and maximum electric
field (above 0) for the EPW inside the wake field vs the laser-
group velocity (full lines): the curves are labeled with the values
of Vaa,. Same quantities at wave breaking (dotted lines).

value a, =6, whereas a doubled mesh size gives a;=35.
Using the 1.l-dimensional relativistic particle-in-cell
computer code EUTERPE, we looked for the conditions
under which some electron orbits distinctly cross each
other and the EPW electric field reaches Akhiezer and
Polovin’s limit E,.;, behind the pulse. We have chosen
four distinct plasma densities and compare in Fig. 1 the
results with the analytical ones by using the classical
group velocity v, /c =(1—co12,e /w3)!”2. Both the square
pulse and the more realistic sine-squared shaped pulse
defined by f(0<¢<&y)=sin*(7f/E,) with =27 and
f(&>§,)=0 were used. As previously seen by Watteau
et al. [1], the pulse width has less effect than for classical
irradiances, so that the optimum pulse width is not
sharply defined. The bars in Fig. 1 represent incident
field ranges; for the bottom values, no crossing of electron
orbits is observed and, for the top values, electron over-
taking and the amplitude E,,; for the electric field at the
trailing pulse edge are observed; the squares indicate a
square profile and lie below the triangles which are asso-
ciated with a sine-squared profile. The close agreement
of the “bars with squares” with Eq. (16) indicates that the
laser-pulse modification does not play a role before wave
breaking, which is consistent with our assumption of a
given group velocity; wave breaking takes place immedi-
ately after the pulse. We find that the bell-shaped pulses
give rise to wave breaking for slightly larger irradiance
ranges; this is consistent with the fact that the maximum

locities v, /c =1 and 0.87; the pulse length is optimum. The
laser field is V'aa,=2 and the laser pulse propagates from left
to right.

potential for a bell-shaped pulse is somewhat smaller than
the one for a square pulse, according to numerical results
from the potential equation integration. As a general
rule for the relativistic regime, the sharper the leading
pulse edge, the stronger the wake-field EPW; the square
pulse is therefore the most efficient profile, and the bell-
shaped profile does not depart greatly from the former if
the pulse width is about the same as or smaller than
27 /w,.. Wave breaking leads to very fast electrons: at
0.01n,, a 40A,-long plasma gave at a;=6 electron ener-
gies up to 17 MeV. Such large energies are due to the
subsequent acceleration by the EPW field of the electrons
ejected from the wave-breaking region.

As a conclusion, taking into account the sub-light-laser
group velocity brings limits to the transfer of the laser-
pulse energy to a coherent EPW. This means that, for a
given density, increasing the irradiance above the thresh-
old presented in this paper would break the EPW and
would lead to fast electron generation. We have provided
a simple analytic criterion for the wave-breaking onset.
Inside the pulse, the EPW is stabilized and can lead to
electric fields much larger that the usual isolated-EPW
limit.

Note added. We recently became aware of a paper on
the wake field induced by sub-light-speed pulses: 1. G.
Murusidze and L. N. Tsintsadze, J. Plasma Phys. 48, 391
(1992).
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Umstadter.
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